Math 241 Winter 2024 Lecture 11

Feb 19-8:47 AM

$$
\begin{aligned}
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B} \\
& \text { verify } \quad \cos \left(\frac{\pi}{2}-\alpha\right)=\sin \alpha \\
& \cos \left(\frac{\pi}{2}-\alpha\right)=\cos \frac{\pi}{2} \cos \alpha+\sin \frac{\pi}{2} \sin \alpha \\
& =0 \cdot \cos ^{\infty} \alpha+1 \cdot \sin \alpha \\
& =0+\sin \alpha=\sin \alpha \\
& \text { Verify } \sin \left(90^{\circ}-\alpha\right)=\cos \alpha \\
& \sin \left(90^{\circ}-\alpha\right)=\sin 90^{\circ} \cos \alpha-\cos 90^{\circ} \sin \alpha \\
& =1 \cdot \operatorname{Cos} \alpha-0 \cdot \operatorname{Sin} \alpha=\operatorname{Cos} \alpha \\
& \text { Show } \tan \left(90^{\circ}-\alpha\right)=\cot \alpha \\
& \tan \left(90^{\circ}-\alpha\right)=\frac{\tan 90^{\circ}-\tan \alpha}{1+\tan 90^{\circ} \cdot \tan \alpha} \quad \text { but } \tan 90^{\circ} . \\
& \tan \left(90^{\circ}-\alpha\right)=\frac{\operatorname{Sin}\left(90^{\circ}-\alpha\right)}{\operatorname{Cos}\left(90^{\circ}-\alpha\right)}=\frac{\operatorname{Cos} \alpha}{\operatorname{Sin} \alpha}=\operatorname{Cot} \alpha
\end{aligned}
$$

Complementary angles Σ_{1} Cofunctions:

$$
\left.\begin{aligned}
& \sin \left(90^{\circ}-x\right)=\cos x \\
& \operatorname{Cos}\left(90^{\circ}-x\right)=\operatorname{Sin} x \\
& \tan \left(90^{\circ}-x\right)=\cot x
\end{aligned} \right\rvert\, \begin{aligned}
& \operatorname{Csc}\left(90^{\circ}-x\right)=\operatorname{Sec} x \\
& \operatorname{Sec}\left(90^{\circ}-x\right)=\csc x \\
& \operatorname{Cot}\left(90^{\circ}-x\right)=\tan x
\end{aligned}
$$

find x :

$$
\begin{aligned}
& \sin (3 x-10)=\cos (x+40) \\
& \text { Cofunctions } \rightarrow 3 x-10+x+40=90 \\
& 3 x-10=3(15)-10) x+40=4 x+30=90 \\
& \begin{array}{lrl}
=45-10 & 15+40= & 4 x=60 \\
& =35^{\circ} & 55^{\circ} \\
& & x=15
\end{array} \\
& \alpha=100.2^{\circ} \\
& \begin{array}{l}
a=117 \mathrm{~m} \\
\ddots \quad b=69.2
\end{array} \\
& 100.2^{\circ}
\end{aligned}
$$

find x :

$$
\tan (45-3 x)^{\circ}=\cot (15-2 x)^{\circ}
$$

when cofunctions are equal, angles must be Complementary.

$$
\begin{aligned}
& 45-3 x+15-2 x=90 \\
& 60-5 x=90 \\
&-5 x=30 \quad x=-6 \\
& 45-3 x=45-3(-6)=45+18=63^{\circ} \\
& 15-2 x=15-2(-6)=15+12=27^{\circ} \\
& \tan 63^{\circ}=1.963 \\
& \cot 27^{\circ}=\frac{1}{\tan 27^{\circ}}=1.963
\end{aligned}
$$

verify $\sec \left(\frac{3 \pi}{2}-x\right)=-\csc x$
$\operatorname{Sec}\left(\frac{3 \pi}{2}-x\right)=\frac{1}{\cos \left(\frac{3 \pi}{2}-x\right)}$

$$
\begin{aligned}
& =\frac{1}{\cos ^{3 \pi 0}} \frac{1}{2} \cos x+\sin \frac{3 \pi^{-1}}{2} \sin x \\
& =\frac{1}{-\sin x}=-\frac{1}{\sin x}=-\csc x
\end{aligned}
$$

Jan 22-8:30 AM

Find the exact value of $\tan \frac{11 \pi}{12}$.

$$
\begin{aligned}
& \left(\frac{11 \pi}{12} \cdot \frac{180}{\pi}\right)^{\circ}=165^{\circ}=120^{\circ}+45^{\circ} \\
& \begin{aligned}
\tan \frac{11 \pi}{12} & =\tan \left(120^{\circ}+45^{\circ}\right) \\
& =\frac{\tan 120^{\circ}+\tan 45^{\circ}}{1-\tan 120^{\circ} \cdot \tan 45^{\circ}}=
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-\tan 60^{\circ}+1}{1-\left(-\tan 60^{\circ}\right) \cdot 1}=\frac{-\sqrt{3}+1}{1+\sqrt{3}} \\
& =\frac{1-\sqrt{3}}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}} \\
& =\frac{1-2 \sqrt{3}+3}{1-3}=\frac{4-2 \sqrt{3}}{-2} . \\
& =\frac{-2(-2+\sqrt{3})}{-2}=-2+\sqrt{3}
\end{aligned}
$$

Simplify $\tan \left(180^{\circ}+\theta\right)$

$$
\begin{aligned}
& =\frac{\sin \left(180^{\circ}+\theta\right)}{\cos \left(180^{\circ}+\theta\right)} \\
& =\frac{\sin 180^{\circ} \cos \theta+\cos 180^{\circ} \sin \theta}{\cos 180^{-1} \cos \theta-\sin 180^{\circ} \sin \theta} \\
& =\frac{-\sin \theta}{-\cos \theta}=\tan \theta
\end{aligned}
$$

without call, find

$$
\begin{aligned}
\frac{\tan 100^{\circ}+\tan 80^{\circ}}{1-\tan 100^{\circ} \cdot \tan 80^{\circ}} & =\tan \left(100^{\circ}+80^{\circ}\right) \\
& =\tan 180^{\circ}=\frac{\sin 180^{\circ}}{\cos 180^{\circ}} \\
\frac{\tan A+\tan B}{1-\tan A \cdot \tan B} & =\tan (A+B)=\frac{0}{-1}
\end{aligned}
$$

More identities:

$$
\begin{aligned}
& \sin 2 A=2 \sin A \cos A \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1=1-2 \sin ^{2} A \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Given $\quad \sin A=\frac{-4}{5}, A$ is in $Q \underline{V}$ Find

$$
\begin{aligned}
& \sin 2 A=2 \sin A \cos A=2 \cdot \frac{-4}{5} \cdot \frac{3}{5} \\
& =\frac{-24}{25} \\
& \cos 2 A=\cos ^{2} A-\sin ^{2} A=\left(\frac{3}{5}\right)^{2}-\left(\frac{-4}{5}\right)^{2}=\frac{9}{25}-\frac{16}{25}=\frac{-7}{25} \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}=\frac{2\left(\frac{-4}{3}\right)}{1-\left(\frac{-4}{3}\right)^{2}}=\frac{\frac{-8}{3}}{1-\frac{16}{9}}=\frac{24}{7}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Verify } \begin{array}{l}
\cot x \sin 2 x-\cos 2 x=1 \\
\cot x \sin 2 x-\cos 2 x= \\
\frac{\cos 2 x}{}=\cos ^{2} x-\sin ^{2} x \\
\sin x
\end{array}+2 \sin x \cos x-\cos 2 x= \\
& 2 \cos ^{2} x-1 \\
& 2 \cos ^{2} x-\left(2 \cos ^{2} x-1\right)= \\
& 2 \cos ^{2} x-2 \cos ^{2} x+1=1
\end{aligned}
$$

$\cos \theta=\frac{-12}{13}, \sin \theta>0$, find $\tan 2 \theta$

verify

$$
\begin{aligned}
\sin 2 A \cos 2 A & =\sin 2 A-4 \sin ^{3} A \cos A \\
\sin 2 A \cos 2 A & =\sin 2 A\left(1-2 \sin ^{2} A\right) \\
& =\sin 2 A-2 \sin 2 A \sin ^{2} A \\
& =\sin 2 A-2 \cdot 2 \sin A \cos A \cdot \sin ^{2} A \\
& =\sin 2 A-4 \sin ^{3} A \cos A
\end{aligned}
$$

verify $\frac{1+\cos 2 x}{\sin 2 x}=\cot x$

$$
\begin{aligned}
\frac{1+\cos 2 x}{\sin 2 x}=\frac{1+2 \cos ^{2} x-1}{2 \sin x \cos x} & =\frac{2 \cos x \cos x}{2 \sin x \cos x} \\
& =\cot x
\end{aligned}
$$

Do not use calculator to evaluate
1)

$$
\begin{aligned}
\cos ^{2} \frac{\pi}{12}-\sin ^{2} \frac{\pi}{12}= & \cos ^{2} 15^{\circ}-\sin ^{2} 15^{\circ} \\
& \cos ^{2} A-\sin ^{2} A=\cos 2 A \\
& =\cos 2 \cdot 15^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

2)

$$
\begin{aligned}
& \text { 2) } \begin{array}{l}
1-2 \sin ^{2} 22.5^{\circ}=\cos 2 \cdot 22.5^{\circ}=\cos 45^{\circ}=\frac{\sqrt{2}}{2} \\
1-2 \sin ^{2} A=\cos 2 A \\
\text { 3) } \begin{aligned}
2 \cos ^{2} 67.5^{\circ}-1 & =\cos 2 \cdot 67.5^{\circ}=\cos 135^{\circ} \\
2 \cos ^{2} A-1 & =\cos 2 A=-\cos 45^{\circ}=-\frac{\sqrt{2}}{2}
\end{aligned}
\end{array} \text { }
\end{aligned}
$$

find x
$\operatorname{Sec} 3 x=\csc 2 x$
when Cofunctions are equal,
Angles are complementary

$$
3 x+2 x=90^{\circ} \quad 5 x=90 \quad x=18
$$

Class QZ
Given $\quad \sin A=\frac{4}{5}, \frac{\pi}{2}<A<\pi$

$$
\cos B=\frac{5}{13}, \quad \frac{3 \pi}{2}<B<2 \pi
$$

Find $\operatorname{Sin}(A+B)$. Exact value.

$$
\begin{aligned}
\sin (A+B) & =\sin A \cos B+\cos A \sin B \\
& =\frac{4}{5} \cdot \frac{5}{13}+\frac{-3}{5} \cdot \frac{-12}{13} \\
& =\frac{20}{65}+\frac{36}{65}=\frac{56}{65}
\end{aligned}
$$

Seraph $y=\sin (2 x-\pi)$ and $y=\csc (2 x-\pi)$

$$
\begin{aligned}
& 0 \leq 2 x-\pi \leq 2 \pi \\
& \pi \leq 2 x \leq 3 \pi \\
& \frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}
\end{aligned}
$$

Graph $y=-\operatorname{Cos}\left(\frac{1}{2} x\right)$ and $y=-\operatorname{Sec}\left(\frac{1}{2} x\right)$

Jan 22-10:10 AM

Graph $y=\tan \left(x-\frac{\pi}{2}\right)$ and $y=\cot \left(x-\frac{\pi}{2}\right)$

$$
\begin{aligned}
-\frac{\pi}{2} & <x-\frac{\pi}{2}
\end{aligned}<\frac{\pi}{2} .
$$

Graph $y=2 \operatorname{Csc}\left(\frac{1}{2} x\right)+1$

1) Graph $y=2 \sin \left(\frac{1}{2} x\right)$

$$
\begin{gathered}
0 \leq \frac{1}{2} x \leq 2 \pi \\
0 \leq x \leq 4 \pi
\end{gathered}
$$

Test Point

$$
\begin{array}{rl}
x & x=\pi \\
y & 2 \csc \left(\frac{1}{2} \pi\right)+1 \\
& =2 \cdot \csc \frac{\pi}{2}+1=2 \cdot \frac{1}{\sin \frac{\pi}{2}}+1=2 \cdot \frac{1}{1}+1=3
\end{array}
$$

Jan 22-10:28 AM

Graph $y=\operatorname{Sin}^{2} x+\operatorname{Cos}^{2} x$

$$
y=1
$$

Graph $y=\tan x \cot x$ for $0 \leq x \leq 2 \pi$ Restrictions
$\tan 90^{\circ}$ und.

$$
\begin{array}{rr}
\tan 270^{\circ} " \quad \cot x=\frac{\cos x}{\sin x} \quad \begin{aligned}
& \sin x=0 \text { at } \\
& 0, \pi, 2 \pi
\end{aligned}
\end{array}
$$

Graph $y=\operatorname{Sec}(\pi x)-1$
Hint: Graph $y=\operatorname{Cos}(\pi x)$

$$
\begin{gathered}
0 \leq \pi x \leq 2 \pi \\
0 \leq x \leq 2
\end{gathered}
$$

Test pt $x=1$

Jan 22-10:49 AM

Graph $y=$ Cot using Cofunction $\dot{\text { E Comply, angle. }}$

$$
\begin{aligned}
& 90^{\circ}-x=\frac{\pi}{2}-x \\
& x=\cot x=\tan \left(\frac{\pi}{2}-x\right)=\tan \left(-\left(x-\frac{\pi}{2}\right)\right) \\
&-\frac{\pi}{2}<\frac{\pi}{2}-x<\frac{\pi}{2}==\tan \left(x-\frac{\pi}{2}\right)
\end{aligned}
$$

 Reflection

$$
\begin{gathered}
-\frac{\pi}{2}<x-\frac{\pi}{2}<\frac{\pi}{2} \\
0<x<\pi
\end{gathered}
$$

Test Point $x=\frac{3 \pi}{4}$

$$
=\cot (\pi / 2)+1=\frac{\cos \pi / 2}{\sin \pi / 2}+1=\frac{0}{1}+1=0+1=1
$$

Jan 22-11:08 AM

Graph $y=-\operatorname{Csc}(-x+\pi)$
Some algebra $y=-\csc [-(x-\pi)]$
$\begin{gathered}\operatorname{Recall} \\ \csc (-\alpha)=-\sec \alpha\end{gathered} \quad y=\cdots-\csc (x-\pi)$
Some prealgebra $y=\csc (x-\pi)$

$$
\begin{aligned}
y & =-\csc \left(-\frac{3 \pi}{2}+\pi\right) \\
& =-\csc \left(-\frac{\pi}{2}\right) \\
& =-\frac{1}{\sin \left(-\frac{\pi}{2}\right)}=-\frac{1}{-1}=1
\end{aligned}
$$

$$
\begin{aligned}
& y=-\operatorname{Sec}(-.25 \pi x)+1 \Rightarrow \begin{array}{l}
=-\operatorname{Sec}(.25 \pi x)+1 \\
\text { Reflection }
\end{array} \\
& \operatorname{Sec}(-\alpha)=\operatorname{Sec} \alpha \\
& \operatorname{Sin}(-\alpha)=-\operatorname{Sin} \alpha \\
& \text { Graph } y=\operatorname{Cos}(25 \pi x) \\
& \cos (-\alpha)=\cos \alpha \\
& 0 \leq 25 \pi x \leq 2 \pi \\
& \tan (-\alpha)=-\tan \alpha, \quad 0 \leq \frac{1}{4} \pi x \leq 2 \pi \\
& 0 \leq \pi x \leq 8 \pi \\
& 0 \leq x \leq 8 \\
& \text { Test Point } x=4 \\
& \begin{aligned}
y & =-\operatorname{Sec}(-.25 \pi \cdot 4)+1 \\
& =-\operatorname{Sec}(-\pi)+1 \\
& =-\frac{1}{\operatorname{Cos}(-\pi)}+1 \\
& =-\frac{1}{-1}+1=1+1=2
\end{aligned}
\end{aligned}
$$

Jan 22-11:31 AM

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \quad \begin{array}{r}
\text { Add } \\
\text { them }
\end{array} \\
& \sin (A+B)+\sin (A-B)=2 \sin A \cos B \\
& \sin A \cos B=\frac{1}{2}[\sin (A+B)+\sin (A-B)]
\end{aligned}
$$

$$
\begin{aligned}
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \quad \begin{array}{c}
\text { Add } \\
\text { them }
\end{array} \\
& \cos (A+B)+\cos (A-B)=2 \cos A \cos B \\
& \cos A \cos B=\frac{1}{2}[\cos (A+B)+\cos (A-B)]
\end{aligned}
$$

New identities:

$$
\begin{aligned}
& \text { Product - to - Sum } \\
& \cos A \cos B \\
& \sin A \sin B \\
& \sin A \cos B
\end{aligned}
$$

Sum - to product

$$
\begin{aligned}
& \sin A+\sin B \\
& \sin A-\sin B \\
& \cos A+\cos B \\
& \cos A-\cos B
\end{aligned}
$$

Half-Angle Identities:
$\operatorname{Sin} \frac{A}{2}$
$\operatorname{Cos} \frac{A}{2}$
$\tan \frac{A}{2}$
class QZ
Graph $y=\operatorname{Sin}(.5 \pi x)+1$

$$
\begin{gathered}
0 \leq 5 \pi x \leq 2 \pi \\
0 \leq \frac{1}{2} \pi x \leq 2 \pi \\
0 \leq \pi x \leq 4 \pi \\
0 \leq x \leq 4
\end{gathered}
$$

