

Feb 19-8:47 AM

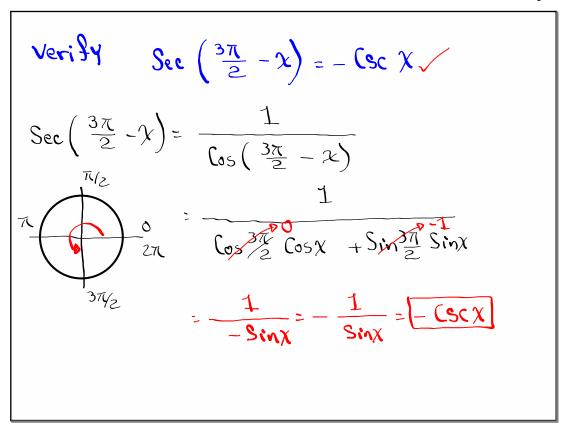
Sin
$$(A - B) = Sin A Cos B - Cos A Sin B$$

Cos $(A - B) = Cos A Cos B + Sin A Sin B$
 $tan (A - B) = \frac{tan A - tan B}{1 + tan A \cdot tan B}$

Verify $Cos(\frac{\pi}{2} - \alpha) = Sin \alpha$
 $Cos(\frac{\pi}{2} - \alpha) = Cos \frac{\pi}{2} (os \alpha + Sin \frac{\pi}{2} Sin \alpha)$
 $Cos(\frac{\pi}{2} - \alpha) = Cos \frac{\pi}{2} (os \alpha + Sin \frac{\pi}{2} Sin \alpha)$
 $Cos(\frac{\pi}{2} - \alpha) = Sin \alpha$
 $Cos(\frac{\pi}{2} - \alpha) = Sin \alpha$
 $Cos(\frac{\pi}{2} - \alpha) = Cos \alpha$
 $Cos(\frac{\pi}{2} - \alpha) = Sin \alpha$
 $Cos(\frac{\pi}{2} - \alpha) = Cos \alpha$
 $Cos(\frac{\pi}{2}$

Jan 22-8:03 AM

Complementary angles
$$\stackrel{?}{=}$$
 Co-functions.
Sin $(90^{\circ} - x) = \cos x$ $(\sec(90^{\circ} - x) = \sec x)$
Cos $(90^{\circ} - x) = \sin x$ $(90^{\circ} - x) = \cot x$
 $\tan(90^{\circ} - x) = \cot x$ $(90^{\circ} - x) = \tan x$
Sin $(3x - 10) = (\cos(x + 40))$
Cofunctions $\Rightarrow 3x - 10 + x + 40 = 90$
 $3x - 10 = 3(15) - 10$ $x + 40 = 4x + 30 = 90$
 $= 45 - 10$ $= 15 + 40 = 4x + 30 = 90$
 $= 35^{\circ}$ $= 17 \text{ m}$
 $x = 100.2^{\circ}$ $x = 17 \text{ m}$


Jan 22-8:13 AM

Sind x:

$$tan (45-3x)^2 = cot(15-2x)^2$$

when cofunctions are equal, angles must be Complementary.

 $45-3x+15-2x=90$
 $-5x=30$
 $x=-6$
 $45-3x=45-3(-6)=45+18=63^2$
 $15-2x=15-2(-6)=15+12=27^2$
 $tan 63^2 = 1.963\sqrt{20}$
 $cot 27^2 = \frac{1}{tan 27^2} = 1.963\sqrt{20}$

Jan 22-8:30 AM

Find the exact value of
$$\tan \frac{117}{12}$$
.

$$\frac{117}{12} \cdot \frac{180}{12} = 165^{\circ} = 120^{\circ} + 45^{\circ}$$

$$\tan \frac{117}{12} = \tan (120^{\circ} + 45^{\circ})$$

$$= \frac{\tan 120^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} + 1} = \frac{-\sqrt{3} + 1}{1 + \sqrt{3}}$$

$$= \frac{1 - \sqrt{3}}{1 + \sqrt{3}} \cdot \frac{1 - \sqrt{3}}{1 - \sqrt{3}}$$

$$= \frac{1 - 2\sqrt{3} + 3}{1 - 3} = \frac{4 - 2\sqrt{3}}{1 - 2 + \sqrt{3}}$$

$$= \frac{1 - 3 + 3}{1 - 3} = \frac{4 - 2\sqrt{3}}{1 - 2 + \sqrt{3}}$$

Jan 22-8:35 AM

Simplify
$$\tan (180^{\circ} + \theta)$$

$$= \frac{\sin(180^{\circ} + \theta)}{\cos(180^{\circ} + \theta)}$$

$$= \frac{\sin(180^{\circ} + \cos(180^{\circ} + \theta))}{\cos(180^{\circ} + \cos(180^{\circ} + \theta))}$$

$$= \frac{-\sin\theta}{-\cos\theta} = \frac{\tan(100^{\circ} + 80^{\circ})}{\tan(100^{\circ} + 80^{\circ})}$$

$$= \tan(100^{\circ} + \tan(180^{\circ} + \cos(180^{\circ} + \theta))$$

$$= \tan(180^{\circ} + \cos(180^{\circ} + \theta))$$

Jan 22-8:45 AM

More identities:
Sin
$$2A = 2 \sin A \cos A$$

Cos $2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$
 $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$
Given $\sin A = -\frac{4}{5}$, A is in QIV Find
 $\sin 2A = 2 \sin A \cos A = 2 \cdot -\frac{4}{5} \cdot \frac{3}{5}$
 $= \frac{-24}{25}$
Cos $2A - \sin A = (\frac{3}{5})^2 - (-\frac{4}{5})^2 = \frac{9}{25} - \frac{16}{25} = -\frac{7}{25}$
 $\tan 2A = \frac{2 \tan A}{1 - \tan^2 A} = \frac{2(-\frac{4}{3})}{1 - (-\frac{4}{3})^2} = \frac{-8}{1 - \frac{16}{9}} = \frac{24}{7}$

Verify
$$\cot x \sin 2x - \cos 2x = 1$$

Cot $x \sin 2x - \cos 2x = \frac{\cos 2x - \sin x}{2\cos^2 x - \sin^2 x}$

Cot $x \sin 2x - \cos 2x = \frac{\cos x}{2\cos^2 x - 1}$

$$\frac{\cos x}{\sin x} \cdot 2\sin x \cos x - \cos 2x = \frac{1 - a\sin^2 x}{2\cos^2 x - 1} = \frac{1 - a\sin^2 x}{2\cos^2 x - 1} = \frac{1}{2\cos^2 x}$$

$$2\cos^2 x - 2\cos^2 x + 1 = 1$$

Jan 22-9:02 AM

$$\frac{\cos \theta = \frac{-12}{13}}{\cos \theta}, \quad \sin \theta > 0, \quad \sin \theta \tan \theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$$

$$\frac{\sin \theta}{1 - \tan^2 \theta} = \frac{2 \cdot (-\frac{5}{12})}{1 - (-\frac{5}{12})^2} = \frac{-120}{119}$$

$$\frac{1}{1 - \frac{25}{144}} = \frac{144 \cdot 1 - 144 \cdot \frac{25}{144}}{119} = \frac{-120}{119}$$

$$\frac{1}{1 - \frac{25}{144}} = \frac{144 \cdot 1 - 144 \cdot \frac{25}{144}}{119}$$

Jan 22-9:15 AM

Verify
$$\frac{1 + \cos 2x}{\sin 2x} = \cot x$$

$$\frac{1 + \cos 2x}{\sin 2x} = \frac{1 + 2\cos^2 x}{2\sin x} = \frac{2\cos x}{\cos x}$$

$$= \cot x$$

1)
$$\cos^{2}\frac{\pi}{12} - \sin^{2}\frac{\pi}{12} = \cos^{2}15^{\circ} - \sin^{2}15^{\circ}$$

 $\cos^{2}A - \sin^{2}A = \cos^{2}A$
 $= \cos^{2}A - \sin^{2}A = \cos^{2}A$

2)
$$1 - 2 \sin^2 22.5^\circ = \cos 2.22.5^\circ = \cos 45^\circ = \frac{52}{2}$$

 $1 - 2 \sin^2 A = \cos 2A$

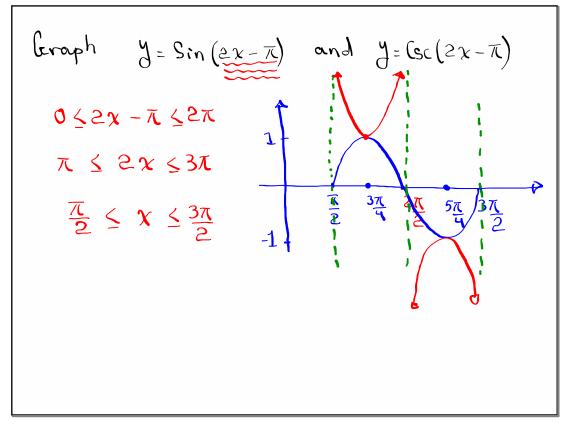
3)
$$2 \cos^2 67.5^\circ - 1 = \cos 2.67.5^\circ = \cos 135^\circ$$

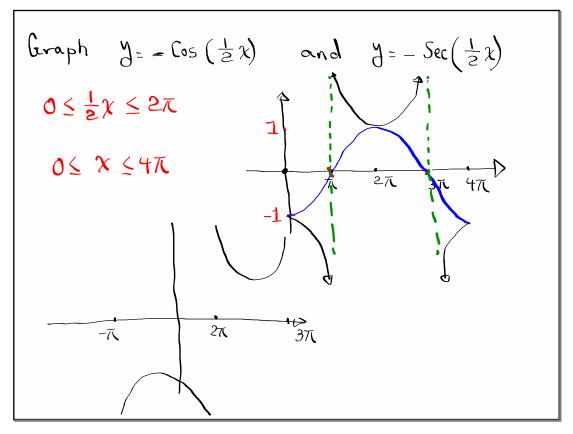
 $2 \cos^2 A - 1 = \cos 2A = -\cos 45^\circ = \frac{5}{2}$

Jan 22-9:27 AM

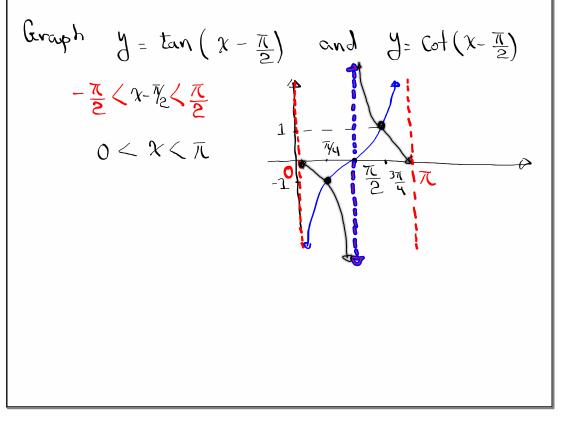
Sind
$$x$$

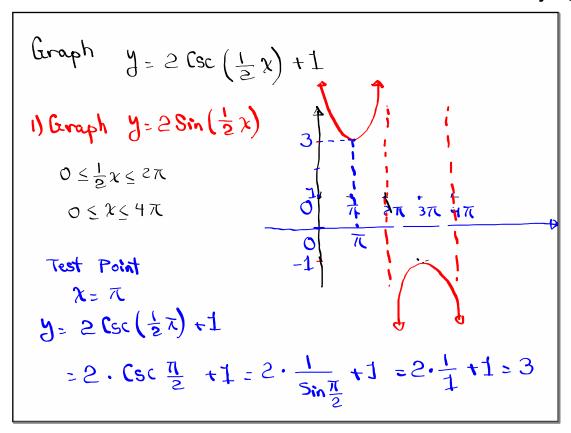
Sec $3x = \csc 2x$
when Co-Sunctions are equal,
Angles are Complementary
 $3x + 2x = 90^{\circ}$ $5x = 90$ $(x=18)$

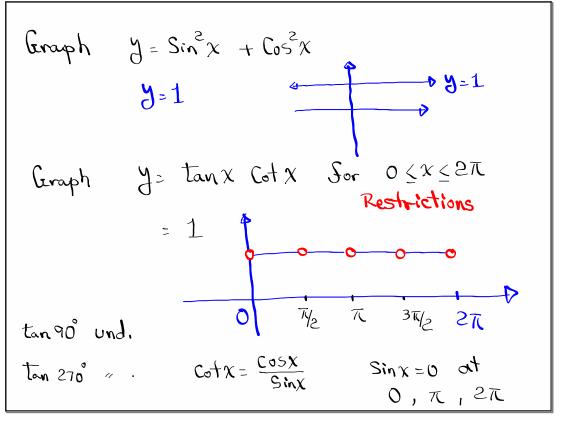

Class QZ


Given
$$Sin A = \frac{4}{5}$$
, $\frac{7}{2} \langle A \langle \pi \rangle$
 $Cos B = \frac{5}{13}$, $\frac{3\pi}{2} \langle B \langle 2\pi \rangle$

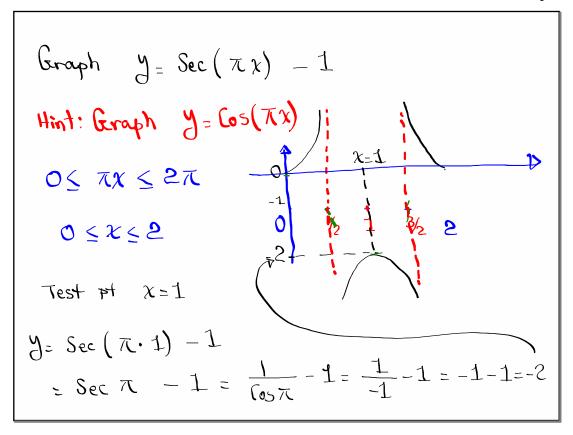
Find $Sin (A + B)$. Exact Value

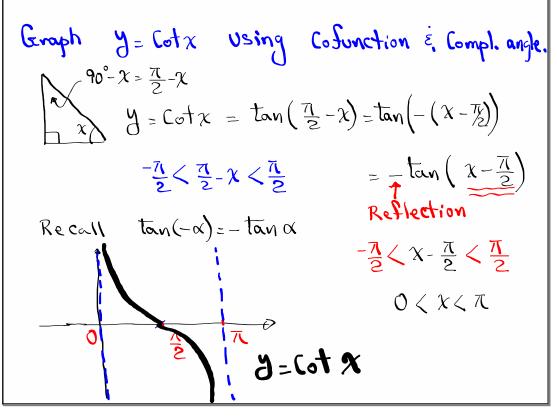

 $Sin (A + B) = Sin A Cos B + Cos A Sin B$
 $= \frac{4}{5} \cdot \frac{5}{13} + \frac{-3}{5} \cdot \frac{-12}{13}$
 $= \frac{20}{65} + \frac{36}{65} = \frac{56}{65}$

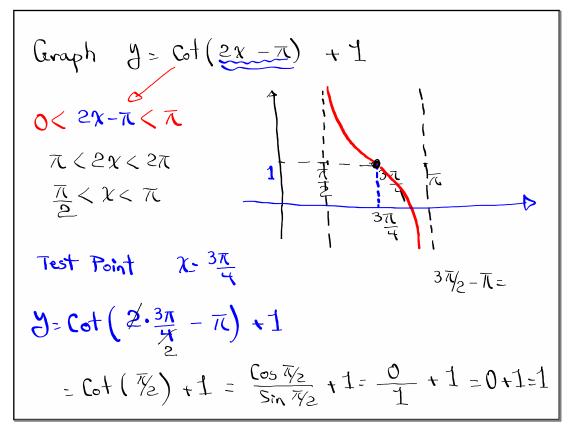

Jan 22-9:40 AM

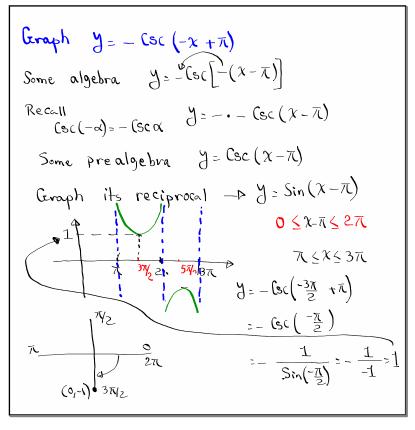


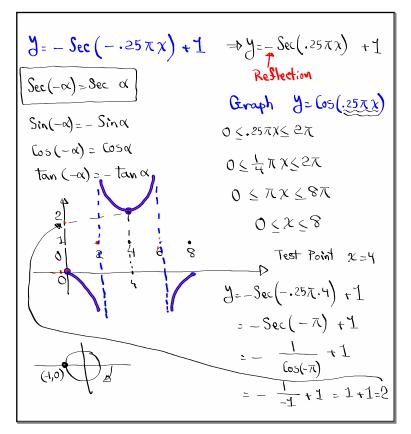
Jan 22-10:10 AM




Jan 22-10:28 AM


Jan 22-10:40 AM


Jan 22-10:49 AM


Jan 22-11:00 AM

Jan 22-11:08 AM

Jan 22-11:19 AM

Jan 22-11:31 AM

Sin
$$(A + B)$$
 = Sin A Cos B + Cos A Sin B

Sin $(A - B)$ = Sin A Cos B — Cos A Sin B Them

Sin $(A + B)$ + Sin $(A - B)$ = 2 Sin A Cos B

Sin A Cos B = $\frac{1}{2}$ $\left[Sin(A + B) + Sin(A - B) \right]$

$$(os(A+B) = CosA CosB - SinA SinB$$
 $(os(A-B) = CosA CosB + SinA SinB$
 $(os(A-B) = CosA CosB) = 2 CosA CosB$

$$(osA CosB = \frac{1}{2} [Cos(A+B) + Cos(A-B)]$$

Jan 22-11:49 AM

```
New identities:

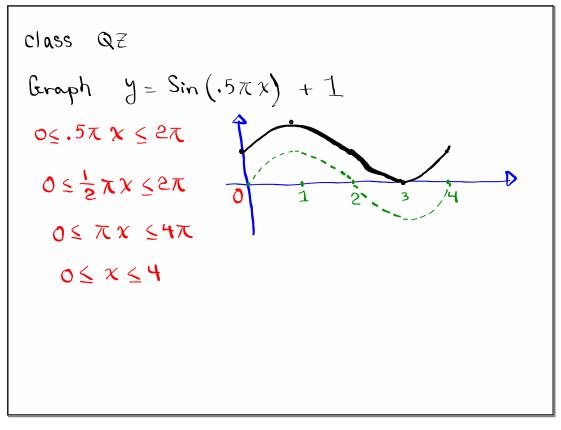
Product - to - Sum

Cos A Cos B

Sin A Sin B

Sin A Cos B

Sum - to product


Sin A + Sin B

Sin A - Sin B

Cos A + Cos B

Cos A - Cos B
```

Jan 22-11:55 AM

